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Abstract 

In a previous paper, it was proposed that  the  cosmological  te rm in Eins te in ' s  field 
equat ions be huge. This proposal  heuristically followed f rom the  combina t ion  of 
Leibniz' principle, Einstein 's  general relativity, and the  observational dominance  o f  
Euclidean geometry .  This paper presents  prel iminary results o f  a t rea tment  o f  the 
large A field equat ions  which holds promise o f  yielding q u a n t u m  wave mechanics  with 
no addit ional assumptions .  

1. Introduction 

Einstein's field equation with the cosmological term may be written* 

Gv + ag.v = -(8rrK/c 2) T.~ (1) 

where ~ is Newton's universal gravitational constant and c is 3 x 10 s m/sec. 
The Leibniz principle, combined with the principles of general relativity and 
with the observed dominance of Euclidean geometry in successful descrip- 
tions of natural phenomena, suggests that A be huge, and that the associated 
"vacuum" or "flat space-time" be very dense, as discussed in Nickerson 
(1975). In geometrodynamic units (Misner et al., 1973), i.e., with K = c = 1, 
A and Tuv have the same dimensions. They are both mass-energy densities. 
Desiring to minimize the number of arbitrary physical constants, one looks 
for some combination of the basic constants that has dimensions of  mass- 
energy density, (length) -2 in geometrodynamics. The only desirable candidate 
that pops into (my) head is 1/h, or 1/h multiplied by a constant of  order 
unity. Now fi, in geometrodynamic units, is the Ptanck length squared, or 
about 10 .69 m 2. Clearly, then, 1/h is huge. It is certainly larger than the 
largest known or contemplated observable densities. For example, the density 
of a neutron star is of order 10 .9 m -2. Thus 1/h is a suitable candidate for 
the large A. It is desirable, as well, because it suggests quantum connections. 
We therefore take A to be 1/h, a very large positive number. With A a very large 

* This  paper uses the  posit ive-t ime sign convent ion  o f  Adler et  al. (1975). 
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positive number, the Agu~ term in Eq. (1) dominates, and it would seem 
appropriate to write guu and Tuv as large constants plus small "fluctuations" 
or perturbations. With small fluctuations, one is justified in linearizing Eq. 
(1). In Sec. 2, we shall examine this wave equation in enough detail to see 
the promise it holds for reproducing Schr6dinger-like quantum wave mechanics. 
The main results of the preliminary investigations of Sec. 2 are (1) a Schr6dinger- 
like quantum wave equation for scalar fluctuations in the metric with wave 
solutions of  wavelength hi~ 2 = Planck length ~ 10 -3s m, (2) an indication 
that linear Dirac-like quantum equations for free particles will come from 
more detailed analysis, and (3) an identification of the Schr6dinger wave 
function 'Is of quantum mechanics with a slow varying (long wavelength) 
amplitude modulation of the metric fluctuation, this modulation being of 
symmetric tensor character. 

2. Indications of  Quantum Wave Mechanics from a Large Positive A 

In this section we shall consider the heuristic implications of a large positive 
A in Eq. (1). These results are very preliminary, and will be only briefly 
indicated. We write 

g.~ = nu~ + e7,,~ (2) 

and 

Tu~ - r (EUc) +fu~ (3) - -  - / , L V  

T(EUC) Here, ~ uv is the energy-momentum stress tensor for the "vacuum" or 
" " " r • (EUC) ,, ,, flat space-time, and f~v rep esents fluctuations from T~v . The EUC 
stands for "Euclidean," the geometry which describes flat space-time. As in 
Nickerson (1976), we write in geometrodynamic units (Misner et al., 1973), 
i.e., withK = c = l ,  

Tu (E~Jc) = -AnjSrr (4) I )  

The ~uv is the Lorentzian metric appropriate to Euclidean geometry: 

0 - 1  0 
% ~ =  0 0 - I  (5) 

0 0 0 - 

Now, in the spirit of Leibniz' principle (Nickerson, 1976), we write 

fu v = U(eT.v) (6) 

where ~ is a scalar function of order much smaller than A. That is, we assume 
that fluctuations in the background stress-energy tensor differ from fluctua- 
tions in geometry by a scalar factor g such that ]/J/A I ~ 1. 
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Substituting Eqs. (2), (3), and (4) into Eq. (1) and subtracting out the 
large A~uv terms, we have 

Guy + AeT ,v  = -8rrfu~ (7) 

We now linearize these equations by the standard technique (Adler et al., 
1975, Sec. 9.1). This linearization has strong justification here in that the 
Leibniz principle plus our experience of the dominance of Euclidean geo- 
metry has implied that g.v  is rigorously ~ v  plus a very small term and like- 
wise f . v  is small (Nickerson, 1976). That is, we have sound justification for 
the linearization of G~v. As results from here on are preliminary, we continue 
with just a qualitative discussion of the linearized equation. Now Guy 
linearized is, to first order in e, a linear second order differential operator, 
operating on e'I'gv 

G~v "+ - ~x 2 - 3y2 - ~z 2 eTw, + crossterms like eTgv (8) 

Thus (7) becomes a linear second order wave equation in the 3'u~, driven by 
-87ry;,~: 

LG [Tuv] + A%~ = -8rrpTuv (9) 

Here L G [3'uv] is the linearized Guy, and we have used fuu written as ePTuv, 
Eq. (6). Immediately, the large A term is a problem, a problem, however, 
that promises to lead us inevitably into quantum mechanics. The A will 
dominate wherever and whenever it appears because it is so large. Thus, at 
each stage we try to "get rid of it." The easiest way to get rid of it seems to 
be with Schr6dinger-like wave equations, by techniques familiar from ele- 
mentary mathematical physics, as follows: The wave solutions to a wave 
equation have the property of being homogeneous. That is, we suspect that 
we can write "Yuv in the form 

3"uu = suvg) (10) 

where ~ satisfies the wave equation 

L O[~] + A ~ = 0  (1t)  

indeed, one can find such q~'s and suu's, and by plugging back into (9) can 
then eliminate the ATu, term, thus solving the first problem with Eq. (9). 
Note that the wave solutions to (1 l)  are characterized by a wavelength-period 
parameter of order A -1/2, i.e., a frequency of order A 1/2. Thus ¢ is a very 
high frequency, short period wave. The idea of identifying A -1/2 withh 1/2 
(in geometrodynamic units) and of calling Eq. (1 l) the quantum wave equa- 
tion for the "graviton" is strongly suggested. The period parameter is then 
just the Planck length: A -1/2 = h 1/2 ~ 10 -3s m; so one has a theoretical 
justification for the idea that vacuum fluctuations occur with characteristic 
"size" 10 -3s m. 
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We have not yet, however, completely got rid of  A. Substituting (10) back 
into (9) and using (11), we eliminate the ATuv term, but are left still with 
Aa/2 terms, as follows. Consider a typical term of L c  [Tuv] = LG [sgv~], say 
(s,~q~)I ~I¢ where " In" ,  following Adler et al. (1975), Sec. 9.1, means 
b/~x~. This gives us four terms: 

(s~v~)le, t~ = suvl,~l~ + suvl,~l~ + suvI~lc~ + s~v~t~l~ (12) 

Now, the last term in (12), according to Eq. (11), combines with other such 
terms in LG [4)] to give -Asvvc~ = -A3'uv and eliminate the big "problem" 
in (9). The first term in (12) will be small; but the middle terms are of order 
+iA1/2suv It~¢ since d) l~ = +iAa/2$. Thus we now have big +iA1/2S.v I~0 
terms, which dominate the equation and must be considered next. Equation 
(9) now has the form 

(Lc [suv] )ok + dominant terms like (iA1/2suv tc~)$ = -87rpsuv¢ (13) 

We can divide through by ¢ to get an equation in the suv only, and if we take 
p to be moA 3/2, with mo the rest mass-energy of an "elementary" particle, 
and if we assume that moA3/2(suv(~) is much bigger than (LG [Suv] )¢, then 
the A1/Zsuv[a and the -87rmoA3/ZSuv terms dominate, giving us a linearized 
quantum wave equation for a free elementary particle of rest mass too: 

sum of terms like 

[ ih  l /  2 S#v lo~ ] = -8rrmoA 3 / 2 suv 

or sum of terms like 

(14a) 

A ~x,~ j -87rrnos m, (14b) 

This does, indeed, look quite like the quantum mechanical wave equation for 
a free particle of rest mass too, with s~v the wave function. Writing A as l /h,  
we have "operators" like ih ~/~x a, and we even have the i. One obviously 
wants to choose the coflstant a in the identification A = a/h such that the 
standard quantum equations are reproduced but a will be of order unity, and 
its value must await detailed study of the theory proposed here. Equations 
(14) are for free particles, i.e., particles in otherwise "evacuated" (no 
fluctuations) space, because we are now left with 

(Lc [s.~])~ : o (15) 

and one guesses this is for free space-time. Also, there are conditions on mo 
and/1 which must be met for this development to be valid. First, in deriving 
(13), we have assumed that l~3'uv(-fuv/e) is negligible compared to ATgv, 
i.e., I tal ~ I A h which means rnoA 3/2 < A or mo < 1/A v2 ~ 10 -3s m 
10 -s  kg. As all particles described by quantum mechanics have mass much 
less than this, the assumption seems all right. Of course, we may interpret 
this as a prediction that quantum mechanical effects are not important for 
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the overall motion of "free" bodies of mass 10 -s  kg or more. We have also 
assumed that 

moA 3/z =/2 >> L G [Suv]/sg v (16) 

which puts another condition on the geometry (suv) for which this analysis 
is valid. An (unchecked) guess is that this is the "free particle in space-time" 
condition. Another idea suggested here is that the "volume" of elementary 
"particles" is of order A -3/2. 

Examining further the requirement of approximate numerical equality 
for [/2suv] and iA1/2suv Is, one sees that this requires 

/2 -~ A1/2/kQM (17) 

where )kQM is a usual quantum wavelength of order 10 - t°  m for electrons to, 
say, 10 - is  m for high energy 7-rays and mesons. The suv/XQM comes from 
suvlc~ in Eq. (14), where we take suv to be a wave function. Equation (17) 
predicts a fundamental "density" for the "core" of elementary "particles" of 
order 1/(hl/Z)tQM) ~ 1045 m -2 to 10 s° m -2. Combining (17) with 
m0 =/2/A 3/2 , we get the de Broglie relationship for (elementary?) particles 
traveling l~ear 3 x 108 m/sec: m o = 1/(AXQM ) = h fikQM. 

For completeness' sake, here is the proposal for the field equations of  
general relativity and quantum wave mechanics: 

Guy + (a/h)gu~ = --8rrTuv (18) 

with a a positive constant of order unity and h = Planck's constant. 
Note the structure now of the geometric fluctuation 7uv. It is an amplitude 

modulated high frequency tensor wave. The high frequency carrier ~ is a scalar 
wave of characteristic period A-1/2("~10 -35 m). The amplitude modulation, 
the "slow varying" part suv, is of  tensor character and is interpreted here as 
the wave function ~I, of quantum mechanics. It may be that the scalar-tensor 
nature can be reversed. That is, it would be of interest to try to make the 
fast varying part a tensor, and the quantum wave function a scalar. The 
possibilities have been only touched on here. The work is very preliminary. 

3. Discussion 

Section 2 outlined a development which seems to show that quantum 
mechanics is implied by the large A theory proposed in Nickerson (1976). 
Recall that the epistemological-philosophical desirables leading to the large 
A theory had, a priori, nothing to do with quantum mechanics. We began 
with only three concepts: two philosophical desirables, the Leibniz principle 
and general relativity; and one observation, the dominant experimental 
observation of our experience, viz, the ubiquitous success of  Euclidean geo- 
metry in the description of all physical phenomena. These three concepts 
seem to lead directly to the quantum description of the universe. Thus we 
seem to get to quantum physics from strictly classical principles. 
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The t reatment  by  wave analysis presented here also suggests a "reason" for 
the great success of  linear theories in physics: The large A term justifies a 
linear per turbat ion t reatment  of fluctuations from the high densi ty vacuum, 
these fluctuations being the observables described by  linear theories. 

Future work should include treatment  of  the large A field equations by 
means of  the quaternion factorization program of  Sachs (1967-72)  and Edmonds 
(1974). The program would be to factor the large A field equations into linear 
quaternion, i.e., spinor, factors, and then proceed to eliminate the large A, 
A I/2, etc., terms with Dirac-like wave equations. 
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